skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Xiaoyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stewart, Frank J. (Ed.)
    ABSTRACT <p>We describe the metagenome composition, community functional annotation, and prokaryote diversity in calcareous stromatolites from a dry stream bed of the San Felipe Creek in the Anza Borrego Desert. Analyses show a community capable of nitrogen fixation, assimilatory nitrate reduction, biofilm formation, quorum sensing, and potential thick-walled akinete formation for desiccation resistance.</p></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available April 11, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10448802-closed-form-machine-unlearning-matrix-factorization" itemprop="url"> <span class='span-link' itemprop="name">Closed-form Machine Unlearning for Matrix Factorization</span> </a> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Zhang, Shuijing</span> <span class="sep">; </span><span class="author" itemprop="author">Lou, Jian</span> <span class="sep">; </span><span class="author" itemprop="author">Xiong, Li</span> <span class="sep">; </span><span class="author" itemprop="author">Zhang, Xiaoyu</span> <span class="sep">; </span><span class="author" itemprop="author">Liu, Jing</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-10-01">October 2023</time> , 32nd ACM International Conference on Information and Knowledge Management) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available October 1, 2024</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10448795-muter-machine-unlearning-adversarial-training-models" itemprop="url"> <span class='span-link' itemprop="name">MUter: Machine Unlearning on Adversarial Training Models</span> </a> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Liu, Junxu</span> <span class="sep">; </span><span class="author" itemprop="author">Xue Mingsheng</span> <span class="sep">; </span><span class="author" itemprop="author">Lou Jian</span> <span class="sep">; </span><span class="author" itemprop="author">Zhang, Xiaoyu</span> <span class="sep">; </span><span class="author" itemprop="author">Xiong, Li</span> <span class="sep">; </span><span class="author" itemprop="author">Qin, Zhan</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-10-01">October 2023</time> , International Conference on Computer Vision) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available October 1, 2024</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10462276-l10-ordering-mnal-feni-influenced-magnetic-field-strain" itemprop="url"> <span class='span-link' itemprop="name">L10 Ordering in MnAl and FeNi Influenced by Magnetic Field and Strain</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1093/micmic/ozad067.690" target="_blank" title="Link to document DOI">https://doi.org/10.1093/micmic/ozad067.690  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Han, Chaoya</span> <span class="sep">; </span><span class="author" itemprop="author">Lejeune, Brian</span> <span class="sep">; </span><span class="author" itemprop="author">Zhang, Xiaoyu</span> <span class="sep">; </span><span class="author" itemprop="author">Ni, Chaoying</span> <span class="sep">; </span><span class="author" itemprop="author">Lewis, Laura H</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-07-22">July 2023</time> , Microscopy and Microanalysis) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available July 22, 2024</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10423619-topological-kinetic-crossover-nanomagnet-array" itemprop="url"> <span class='span-link' itemprop="name">Topological kinetic crossover in a nanomagnet array</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1126/science.add6575" target="_blank" title="Link to document DOI">https://doi.org/10.1126/science.add6575  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Zhang, Xiaoyu</span> <span class="sep">; </span><span class="author" itemprop="author">Fitez, Grant</span> <span class="sep">; </span><span class="author" itemprop="author">Subzwari, Shayaan</span> <span class="sep">; </span><span class="author" itemprop="author">Bingham, Nicholas S.</span> <span class="sep">; </span><span class="author" itemprop="author">Chioar, Ioan-Augustin</span> <span class="sep">; </span><span class="author" itemprop="author">Saglam, Hilal</span> <span class="sep">; </span><span class="author" itemprop="author">Ramberger, Justin</span> <span class="sep">; </span><span class="author" itemprop="author">Leighton, Chris</span> <span class="sep">; </span><span class="author" itemprop="author">Nisoli, Cristiano</span> <span class="sep">; </span><span class="author" itemprop="author">Schiffer, Peter</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-05-05">May 2023</time> , Science) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> Photoemission electron microscopy was used to monitor the kinetics of emergent strings in Santa Fe spin ice. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available May 5, 2024</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10381938-volumetric-lattice-boltzmann-method-wall-stresses-image-based-pulsatile-flows" itemprop="url"> <span class='span-link' itemprop="name">Volumetric lattice Boltzmann method for wall stresses of image-based pulsatile flows</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1038/s41598-022-05269-w" target="_blank" title="Link to document DOI">https://doi.org/10.1038/s41598-022-05269-w  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Zhang, Xiaoyu</span> <span class="sep">; </span><span class="author" itemprop="author">Gomez-Paz, Joan</span> <span class="sep">; </span><span class="author" itemprop="author">Chen, Xi</span> <span class="sep">; </span><span class="author" itemprop="author">McDonough, J. M.</span> <span class="sep">; </span><span class="author" itemprop="author">Islam, Md Mahfuzul</span> <span class="sep">; </span><span class="author" itemprop="author">Andreopoulos, Yiannis</span> <span class="sep">; </span><span class="author" itemprop="author">Zhu, Luoding</span> <span class="sep">; </span><span class="author" itemprop="author">Yu, Huidan</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2022-12-01">December 2022</time> , Scientific Reports) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> Abstract Image-based computational fluid dynamics (CFD) has become a new capability for determining wall stresses of pulsatile flows. However, a computational platform that directly connects image information to pulsatile wall stresses is lacking. Prevailing methods rely on manual crafting of a hodgepodge of multidisciplinary software packages, which is usually laborious and error-prone. We present a new computational platform, to compute wall stresses in image-based pulsatile flows using the volumetric lattice Boltzmann method (VLBM). The novelty includes: (1) a unique image processing to extract flow domain and local wall normality, (2) a seamless connection between image extraction and VLBM, (3) an en-route calculation of strain-rate tensor, and (4) GPU acceleration (not included here). We first generalize the streaming operation in the VLBM and then conduct application studies to demonstrate its reliability and applicability. A benchmark study is for laminar and turbulent pulsatile flows in an image-based pipe (Reynolds number: 10 to 5000). The computed pulsatile velocity and shear stress are in good agreements with Womersley's analytical solutions for laminar pulsatile flows and concurrent laboratory measurements for turbulent pulsatile flows. An application study is to quantify the pulsatile hemodynamics in image-based human vertebral and carotid arteries including velocity vector, pressure, and wall-shear stress. The computed velocity vector fields are in reasonably well agreement with MRA (magnetic resonance angiography) measured ones. This computational platform is good for image-based CFD with medical applications and pore-scale porous media flows in various natural and engineering systems. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1038/s41598-022-05269-w" target="_blank" title="Link to document DOI" data-ostiid="10381938"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10391045-proteomic-approach-identifies-isoform-specific-nucleotide-dependent-ras-interactions" itemprop="url"> <span class='span-link' itemprop="name">A Proteomic Approach Identifies Isoform-Specific and Nucleotide-Dependent RAS Interactions</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1016/j.mcpro.2022.100268" target="_blank" title="Link to document DOI">https://doi.org/10.1016/j.mcpro.2022.100268  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Miller, Seth P.</span> <span class="sep">; </span><span class="author" itemprop="author">Maio, George</span> <span class="sep">; </span><span class="author" itemprop="author">Zhang, Xiaoyu</span> <span class="sep">; </span><span class="author" itemprop="author">Badillo Soto, Felix S.</span> <span class="sep">; </span><span class="author" itemprop="author">Zhu, Julia</span> <span class="sep">; </span><span class="author" itemprop="author">Ramirez, Stephen Z.</span> <span class="sep">; </span><span class="author" itemprop="author">Lin, Hening</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2022-08-01">August 2022</time> , Molecular & Cellular Proteomics) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1016/j.mcpro.2022.100268" target="_blank" title="Link to document DOI" data-ostiid="10391045"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10477317-solventmediated-formation-quasi2d-dionjacobson-phases-perovskites-inverted-solar-cells-over-efficiency" itemprop="url"> <span class='span-link' itemprop="name">Solvent‐Mediated Formation of Quasi‐2D Dion‐Jacobson Phases on 3D Perovskites for Inverted Solar Cells Over 23% Efficiency</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1002/aenm.202302240" target="_blank" title="Link to document DOI">https://doi.org/10.1002/aenm.202302240  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Ramakrishnan, Shripathi</span> <span class="sep">; </span><span class="author" itemprop="author">Song, Donghoon</span> <span class="sep">; </span><span class="author" itemprop="author">Xu, Yuanze</span> <span class="sep">; </span><span class="author" itemprop="author">Zhang, Xiaoyu</span> <span class="sep">; </span><span class="author" itemprop="author">Aksoy, Gavin</span> <span class="sep">; </span><span class="author" itemprop="author">Cotlet, Mircea</span> <span class="sep">; </span><span class="author" itemprop="author">Li, Mingxing</span> <span class="sep">; </span><span class="author" itemprop="author">Zhang, Yugang</span> <span class="sep">; </span><span class="author" itemprop="author">Yu, Qiuming</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-09-27">September 2023</time> , Advanced Energy Materials) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>Abstract

    2D‐on‐3D (2D/3D) perovskite heterostructures present a promising strategy to realize efficient and stable photovoltaics. However, their applicability in inverted solar cells is limited due to the quantum confinement of the 2D‐layer and solvent incompatibilities that disrupt the underlying 3D layer, hampering electron transport at the 2D/3D interface. Herein, solvent‐dependent formation dynamics and structural evolution of 2D/3D heterostructures are investigated via in situ X‐ray scattering. It is revealed that solvent interaction with the 3D surface determines the formation sequence and spatial distribution of quasi‐2D phases withn= 2–4. Isopropanol (IPA) reconstructs the perovskite into a PbI2‐rich surface, forming a strata with smallernfirst, followed by a thinner substratum of largern. In contrast, 2,2,2‐Trifluoroethanol (TFE) preserves the 3D surface, promoting the formation of uniformly distributed largerndomains first, and smallernlast. Leveraging these insights, Dion–Jacobson perovskites are used with superior charge transport properties and structural robustness to fabricate 2D/3D heterostructures dominated byn≥ 3 and engineer a favorable energy landscape for electron tunneling. Inverted solar cells based on 3‐Aminomethylpyridine and TFE achieve a champion efficiency of 23.60%, withVocand FF of 1.19 V and 84.5%, respectively, and superior stabilities witht94of 960 h under thermal stress.

     
    more » « less
  2. Abstract Triple-negative breast cancer (TNBC) is traditionally considered a glycolytic tumor with a poor prognosis while lacking targeted therapies. Here we show that high expression of dihydrolipoamide S-succinyltransferase (DLST), a tricarboxylic acid (TCA) cycle enzyme, predicts poor overall and recurrence-free survival among TNBC patients. DLST depletion suppresses growth and induces death in subsets of human TNBC cell lines, which are capable of utilizing glutamine anaplerosis. Metabolomics profiling reveals significant changes in the TCA cycle and reactive oxygen species (ROS) related pathways for sensitive but not resistant TNBC cells. Consequently, DLST depletion in sensitive TNBC cells increases ROS levels while N-acetyl-L-cysteine partially rescues cell growth. Importantly, suppression of the TCA cycle through DLST depletion or CPI-613, a drug currently in clinical trials for treating other cancers, decreases the burden and invasion of these TNBC. Together, our data demonstrate differential TCA-cycle usage in TNBC and provide therapeutic implications for the DLST-dependent subsets. 
    more » « less